183 research outputs found

    An Empirical Analysis of the Role of Amplifiers, Downtoners, and Negations in Emotion Classification in Microblogs

    Full text link
    The effect of amplifiers, downtoners, and negations has been studied in general and particularly in the context of sentiment analysis. However, there is only limited work which aims at transferring the results and methods to discrete classes of emotions, e. g., joy, anger, fear, sadness, surprise, and disgust. For instance, it is not straight-forward to interpret which emotion the phrase "not happy" expresses. With this paper, we aim at obtaining a better understanding of such modifiers in the context of emotion-bearing words and their impact on document-level emotion classification, namely, microposts on Twitter. We select an appropriate scope detection method for modifiers of emotion words, incorporate it in a document-level emotion classification model as additional bag of words and show that this approach improves the performance of emotion classification. In addition, we build a term weighting approach based on the different modifiers into a lexical model for the analysis of the semantics of modifiers and their impact on emotion meaning. We show that amplifiers separate emotions expressed with an emotion- bearing word more clearly from other secondary connotations. Downtoners have the opposite effect. In addition, we discuss the meaning of negations of emotion-bearing words. For instance we show empirically that "not happy" is closer to sadness than to anger and that fear-expressing words in the scope of downtoners often express surprise.Comment: Accepted for publication at The 5th IEEE International Conference on Data Science and Advanced Analytics (DSAA), https://dsaa2018.isi.it

    Bridging Emotion Role Labeling and Appraisal-based Emotion Analysis

    Full text link
    The term emotion analysis in text subsumes various natural language processing tasks which have in common the goal to enable computers to understand emotions. Most popular is emotion classification in which one or multiple emotions are assigned to a predefined textual unit. While such setting is appropriate to identify the reader's or author's emotion, emotion role labeling adds the perspective of mentioned entities and extracts text spans that correspond to the emotion cause. The underlying emotion theories agree on one important point; that an emotion is caused by some internal or external event and comprises several subcomponents, including the subjective feeling and a cognitive evaluation. We therefore argue that emotions and events are related in two ways. (1) Emotions are events; and this perspective is the fundament in NLP for emotion role labeling. (2) Emotions are caused by events; a perspective that is made explicit with research how to incorporate psychological appraisal theories in NLP models to interpret events. These two research directions, role labeling and (event-focused) emotion classification, have by and large been tackled separately. We contributed to both directions with the projects SEAT (Structured Multi-Domain Emotion Analysis from Text) and CEAT (Computational Event Evaluation based on Appraisal Theories for Emotion Analysis), both funded by the German Research Foundation. In this paper, we consolidate the findings and point out open research questions.Comment: under review for https://bigpictureworkshop.com

    Automatic Emotion Experiencer Recognition

    Full text link
    The most prominent subtask in emotion analysis is emotion classification; to assign a category to a textual unit, for instance a social media post. Many research questions from the social sciences do, however, not only require the detection of the emotion of an author of a post but to understand who is ascribed an emotion in text. This task is tackled by emotion role labeling which aims at extracting who is described in text to experience an emotion, why, and towards whom. This could, however, be considered overly sophisticated if the main question to answer is who feels which emotion. A targeted approach for such setup is to classify emotion experiencer mentions (aka "emoters") regarding the emotion they presumably perceive. This task is similar to named entity recognition of person names with the difference that not every mentioned entity name is an emoter. While, very recently, data with emoter annotations has been made available, no experiments have yet been performed to detect such mentions. With this paper, we provide baseline experiments to understand how challenging the task is. We further evaluate the impact on experiencer-specific emotion categorization and appraisal detection in a pipeline, when gold mentions are not available. We show that experiencer detection in text is a challenging task, with a precision of .82 and a recall of .56 (F1 =.66). These results motivate future work of jointly modeling emoter spans and emotion/appraisal predictions

    Entity-based Claim Representation Improves Fact-Checking of Medical Content in Tweets

    Full text link
    False medical information on social media poses harm to people's health. While the need for biomedical fact-checking has been recognized in recent years, user-generated medical content has received comparably little attention. At the same time, models for other text genres might not be reusable, because the claims they have been trained with are substantially different. For instance, claims in the SciFact dataset are short and focused: "Side effects associated with antidepressants increases risk of stroke". In contrast, social media holds naturally-occurring claims, often embedded in additional context: "`If you take antidepressants like SSRIs, you could be at risk of a condition called serotonin syndrome' Serotonin syndrome nearly killed me in 2010. Had symptoms of stroke and seizure." This showcases the mismatch between real-world medical claims and the input that existing fact-checking systems expect. To make user-generated content checkable by existing models, we propose to reformulate the social-media input in such a way that the resulting claim mimics the claim characteristics in established datasets. To accomplish this, our method condenses the claim with the help of relational entity information and either compiles the claim out of an entity-relation-entity triple or extracts the shortest phrase that contains these elements. We show that the reformulated input improves the performance of various fact-checking models as opposed to checking the tweet text in its entirety.Comment: Accepted at The 9th Workshop on Argument Minin
    • …
    corecore